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We present the concept of superenergy tensors in the framework of general 
relativity (GR). These tensors were introduced constructively by the author years 
ago and they were obtained by a suitable averaging of the energy-momentum 
tensors or pseudotensors. Because in GR the Einstein canonical energy- 
momentum pseudotensor Eli k of the gravitational field and the canonical energy- 
momentum complex E K, k = t~ ' [ (T ,  k + etik), matter and gravitation, are physically 
distinguished, we confine this paper to the canonical superenergy tensor gSi k of 
the gravitational field F~t and to the canonical total superenergy tensor Si t. = .~Si k 
+ "Si k of matter and gravitation only. These superenergy tensors can be obtained 
by the above-mentioned averaging of the pseudotensor Eti ~ and complex EKi ~. 
We give the analytic forms of these two canonical superenergy tensors and show 
some of their possible applications in GR. The canonical superenergy tensor .~Si k 
of the gravitational field F~:t can be used as a substitute for the nonexisting energy- 
momentum tensor of this field. 

1. INTRODUCTION 

The very difficult problem of the conservation laws in general relativity 
(GR) has been intensively studied by many authors (see, e.g., Trautman, 
1962; Cattaneo, 1965; M~ller, 1966, 1978; Garecki, 1973; Goldberg, 1980; 
Winicour, 1980; Landau and Lifschitz, 1988; Wald, 1984; Thirring, 1978). 
The main results of these investigations are the following: 

1. Owing to the nontensorial character of the gravitational strengths, 
the gravitational field in GR has no energy-momentum tensor. It 
follows from this that the gravitational energy and momentum are not 
localized. This leads us to conceptual and interpretational difficulties 
(Trautman, 1962; Cattaneo, 1965). 
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2. Without introducing any supplementary elements into GR, one can 
only introduce the so-called double-index gravitational energy- 
momentum pseudotensors and also nontensorial double-index 
energy-momentum complexes (matter and gravitation). 

The best of the possible gravitation double-index energy-momentum 
pseudotensors and complexes is the canonical energy-momentum pseudoten- 
sor Et~ proposed by Einstein and connected with it the canonical, double- 
index energy-momentum complex E Ki k = x/l g l(T, .k + Etik), satisfying 

~/Jgl(Ti  k q- Eli k) = FUiktl (1.1) 

and (local conservation laws) 

[ tx/ /~(T/k -f- Etik)],k = 0 (1.2) 

where FUi kl = (--)FUi lk are the so-called Freud superpotentials. 
Here T~ denotes the components of the symmetric energy-momentum 

tensor of matter and g is the determinant of the metric tensor; ,i denotes 
partial differentiation. The Latin indices run over 0, 1, 2, 3 and the symbol 
• = means "by definition." 

The equations (1.1) may be obtained by a suitable transformation of the 
Einstein equations with the T~ as sources (see, e.g., Cattaneo, 1965; Moiler, 
1966, 1978; Garecki, 1973; Goldberg, 1980). 

The Einstein canonical energy-momentum pseudotensor Eti ~ is a qua- 
dratic function of the gravitational strengths Fik and has the following form 
(see, e.g., Weber, 1961; Landau and Lifschitz, 1988): 

C4 { k s l r r / 
- - -  - F m ,  Fn) Etik 16"rrG Big ~ (FmrF,l 

_~ [ r  ~ l (I '~pg' , ' -  I",,g~')g~ 
+ 4 

l k ,  
- ~ (a,Fmt + (1.3) 

- , I  J 

The Einstein canonical energy-momentum complex EKi k and the pseu- 
dotensor Eti k, like other double-index energy-momentum complexes, can be 
reasonably used only in the case of a so-called closed system, i.e., in the case 
of an isolated and nonradiating system (Trautman, 1962; MOiler, 1966, 1978), 
to calculate global energy and momentum (Einstein-Klein theorem) and, in 
general, in the case of the so-called asymptotically flat space-times (Goldberg, 
1980; Winicour, 1980) and only by using asymptotically flat coordinates (at 
spatial infinity or at null infinity). By using the Einstein complex zKi k and 
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pseudotensor Et, -k in this way one can obtain all physically valid results 
obtained recently in other ways in the energy-momentum problem in GR, 
e.g., the ADM energy or Witten's theorem on the positivity of the total energy 
(Goldberg, 1980; Faddeev, 1982). On the other hand, the complex Egi  k and 
the pseudotensor Eti k have no physical meaning in a local analysis of the 
gravitational field. 

3. By introducing supplementary elements into the structure of the GR 
like arbitrary vector field, tetrads, a double metric, or torsion, one 
can obtain covariant energy-momentum complexes and covariant 
conservation laws. 

Following this approach, the best solution of the energy-momentum 
(and angular momentum) problem was obtained by Komar (1959, 1962) in 
terms of so-called single-index complexes (Trautman, 1962; Cattaneo, 1965). 

The single-index complexes can be best adapted to the general covariance 
of GR, e.g., the single-index complex obtained by Komar 

c___~ 4 
}x/-~lTik~k + gJ' = 47rG 0k(v/~Vti~ ~1) =: KJ i (1.4) 

satisfying local conservation laws 

Kfi,i = ViK J i  : 0 (1.5) 

is a vector density and therefore it leads to geometrically correct integrals 
on global quantities: the suitable integrals are scalars. Here ~"(x) denotes an 
arbitrary vector field and gji means the gravitational part of the Komar 
complex. 

Moreover, the single-index complexes admit a formulation of the conser- 
vation laws for the angular momentum also. 

However, using Komar's (or other) single-index complex KJ i, we have 
a difficult problem: how do we choose the suitable vector field ~i(x), called 
the descriptor, in order to obtain physically valid quantities like energy and 
linear and angular momentum and physically valid conservation laws for 
these quantities? 

It is assumed (Trautman, 1962; Cattaneo, 1965; Goldberg, 1980; Wini- 
cour, 1980; Wald, 1984; Komar, 1959, 1962) that, in analogy with the flat 
Minkowskian space-time, only the Killing vector fields or, at least, asymptoti- 
cally Killing vector fields should be used as descriptors. But such vector 
fields do not exist in realistic space-time. Moreover, the Komar expression 
needs a null-hypersurface-dependent modification at null infinity (Goldberg, 
1980; Winicour, 1980) to obtain Bondi's results, considered as correct. 

To sum up, one can say that the energy-momentum problem in GR has 
no satisfactory local solution. There exists only a satisfactory global solution 
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of the problem in asymptotically flat space-times and it univocally distin- 
guishes the Einstein canonical energy-momentum complex EK~ and the 
canonical pseudotensor Eti ~ as the best ones. 

Only the Einstein complex is derivable from the Lagrangian as the 
canonical one and gives correct physical results at both spatial and null 
infinity (Goldberg, 1980). 

Therefore, in the following we will confine ourselves to the canonical 
pseudotensor Et~ and to the canonical complex E Ki k only. 

2. THE CANONICAL SUPERENERGY TENSORS IN 
GENERAL RELATIVITY 

The difficulties connected with localization of the gravitational energy 
and especially the lack of any gravitational energy-momentum tensor in GR 
inclined me years ago (e.g., Garecki, 198 la) to introduce superenergy tensors 
into GR. 

The idea of the superenergy tensors uses some special properties of the 
so-called normal coordinates NCS(P) (the point P is the origin of these 
coordinates) in the framework of Riemann geometry (Veblen, 1933; Schouten, 
1954; Petrov, 1966). The most important of these properties discovered by 
Veblen (1933) and Schouten (1954) is the following: the coefficients of the 
Maclaurin series formed in NCS(P) for tensofial fields or pseudotensorial 
fields formed from gravitational strengths F~t are true tensors. Moreover, the 
construction of the superenergy tensors uses some generalization of the Pirani 
averaging (Pirani, 1957). 

Let us suppose that in the space-time V4 a physical field • is given. Its 
invariant Lagrangian density is A and the symmetric, metric energy-momen- 
tum tensor corresponding to it is ~'T/k. We will construct the metric superenergy 
tensor *Sik(P) of the field • and at the point P E V4 in the following manner. 

Let us introduce the normal coordinate system (Veblen, 1933; Schouten, 
1954; Petrov, 1966) NCS(P) for the Riemannian connection F~t and consider 
the four-dimensional cube C: ( - ) a  < yi _< a with a > 0 being sufficiently 
small. Here yi (i = 0, 1, 2, 3) denotes the normal coordinates. The point P 
[ = the origin of the NCS(P)] is the geometric center of this cube. 

Then we define 

(a Ia Ia f a (*Tik - *Tik) dy°dy' dy2dy3 
• Sik(P) := l i m  -)a ¢-)a -)~ -)~ (2.1) 

a~0 8/3a 6 

If the field ~'T/g is of the class 2 C r, r -> 3, then we have, by expanding ~T/k 
to the third order according to Maclaurin's formula, 

2 In the following we will assume that all the considered fields are of the class C r, r -> 3. 
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1 
*T/k = *it'ik + 0, *T/~y' + ~ 0~0b *T.ky.yb + R3 (2.2) 

Here R 3 is the remainder of the third order. 
Substituting this into (2.1), we get after some calculations 

~Sik(P) = 0o00 ~ i  k "~ 0101 ~ T i  k -~ 0202 ~7"i k + 0303 ~ T i  k (2.3) 

Introducing 

a t = 8~ in NCS(P), g,,b = rlao in NCS(P) (2.4) 

where .qaO is the Minkowskian metric with signature (+ ,  , , - ) ,  we can 
write this covariantly as 

'l'sik(p; u t) = (2u,'t~ o - gtO)*Tik,a b 

=: (2u"a b - g~b)*T/k,b (2.5) 

The dot above a tensor field denotes the value of this field at the point P 
and the symbols ,i or 0/denote partial differentiation. 

The *7"ik~b is a true tensor (Veblen, 1933; Schouten, 1964; Petrov, 1966) 
having the following form (Garecki, 198 l a): 

*Tikab V(aV~b)i~i k + "c " k _ I "k "c = R (alilb)Tc "~ R (alclb)Ti (2.6) 

Here V denotes the covariant derivative with respect to the Riemann connec- 
tion ojkk = F~t dx / and parentheses mean symmetrization, ( a l c l b )  := ½(acb 
+ bca). 

We will call the four-index tensor given by (2.6) the metric superenergy 
supertensor of the field ~.  This tensor is more fundamental than the double- 
index t e n s o r  ~sik(P; ul). 

The averaging given by (2.1) is a generalization of  the averaging pro- 
posed by Pirani (1957). 

The superenergy tensor "~Sik(P; u l) is a local construction which explicitly 
depends on the form of  the energy-momentum tensor *T, -k and on the four- 
velocity ul: utut = 1 of an observer at rest at the origin of the NCS(P). 

For a given energy-momentum tensor *T~ k the field of the supertensor 
*T,.k~b is uniquely determined. The same can be done for the tensor field 
*Si~(P; u t) (P is variable now) provided a vector field u t is given. 

Further, we define the density e~ of the superenergy of the field • and 
Poynting's supervector Pi of this field for an observer at rest at the origin of 
the NCS(P), 

E s "~  ~Sikl4il~k (2.7) 

Pi := ( ~  - akai) '~S,'fi, (2.8) 
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The components of the superenergy tensor *Sik(P; u 1) have dimensions 
equal to cm(-)2× dimensions of the components of the energy-momentum 
tensor. The same dimensions also apply to the components of the superenergy 
supertensor '~Tikab . 

If we substitute into (2.1), after expanding according to Maclaurin's 
formula, the so-called energy-momentum pseudotensors  o f  the gravitational 
f i e ld  of GR, then we will also get true tensors. These tensors may have more 
symmetry properties than the pseudotensors from which they were obtained, 
e.g., the canonical  superenergy tensor gSik(P; u t) of the gravitational field 
Fit obtained from the canonical pseudotensor E tk is (in vacuum) symmetric 
(after raising or lowering a suitable index). 

This canonical superenergy tensor of the gravitational field has the 
following form (Garecki, 1981a): 

2ct 
g,.Cik(p; U t) = 9 (2aaub . gab)[nkia b _~_ Tkia b 

1 ~*Otm,, ri:, + kt . , .~)  
-- "~ uil~ bkl~lrana 

+ 28ki132E(algl~,g)b)- 3132ff_,i(a,Ek)b ) 

- 13Rgik<.E~o)- 13Rki~(oE~j 

=" (2ua# b - g°°)Gik,~ o (2.9) 

In the above expression et = c4/(16,rrG) = I/(213); Riktm denotes the 
curvature tensor components and Ei k are the components of the modified 
energy-momentum tensor of matter, 

l 1 8ikT Ei k : :  Ti k - -~ ~kT  I = T k -- 

Here T/k denotes the components of a symmetric, metric energy-momen- 
tum tensor of matter as sources in the Einstein equations. 

The tensor G;k~b is the canonical  superenergy supertensor of the gravita- 
tional field Fgc. Here Bki~b denotes the Bel -Rob inson  tensor components (Bel, 
1958, 1959, 1962) 

1 RkDImn D Bkiab "= RldmaRilmb q'- RklmbRilma -- ~ u i , x  artlmnb (2.10) 

and 

1 RkDlmn D Tkiab :~--- Rklmagimlb "}- RklmbRimla -- ~ u ir ,  ar, lnmb (2.11) 

In vacuum the superenergy t e n s o r  gsik(p; u I) has the simpler form 
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2or 
gSik(P; u t) = - -~  (2(tatj b - gab)[Bkia b -{- Tkiab] (2.12) 

Bkiab denotes the components of the vacuum Bel-Robinson tensor 

1 ~kwt,,~ ul (2.13) Bkiab "= wklmaWihnb "+" wkhnb Wilma --  ~ t* i ,v a "  Imnb 

Tki~b is the tensor 

1 8k ° wim,puz (2.14) Tki~b :=  wklmaWimlb + wklmbWirnla -- ~ ~ie~ab . . . .  hnnp 

and Wkiab denotes the components of the Weyl tensor. 
The superenergy tensors of the gravitational field Fit calculated from 

other energy-momentum pseudotensors of the field are much more compli- 
cated in form then the canonical one given by (2.9) (Garecki, 1973). However, 
every superenergy tensor of the gravitational field F~,t explicitly contains the 
tensor (2.9) (Garecki, 1973). This points out the special physical meaning 
of the canonical superenergy tensor gSik(P; u t) of the field. 

It is easily seen that the gravitational superenergy density ges := gSi~u~uk 
is localized. 

We may call the tensor 

2a 
Mik(P; u t) "= - ~  (2a"a b - g~b)Bk~b (2.15) 

the Maxwellian part  o f  the canonical superenergy tensor gSik(P; u t) of the 
gravitational field F~.t because the method of construction of the Bel-Robinson 
tensor Bk,-~b from the Bianchi identities and their contractions (see, e.g., Oktem, 
1968; Garecki, 1973) is identical to the method of obtaining the symmetry 
energy-momentum tensor of the electromagnetic field by using the Maxwell 
equations only. 

We remark here that for the vacuum metric of types II and III in the 
Petrov algebraic classification (Petrov, 1966) 

c 4 
gS0 k = - -  Bk00o (2.16) 

216"rrG 

According to Pirani's criterion (Pirani, 1957), gravitational radiation is pres- 
ent in the empty space-times of types II and III. 

Thus, the formula (2.16) shows that the local superenergy f lux  of a 
gravitational wave is proportional to the components Bk00o of the Bel-  
Robinson tensor. 

In analogy to the canonical energy-momentum complex EK~ = 
Ix~l(Ti  k + Eti k) of matter and gravitation, one can consider in GR the total, 
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canonical  superenergy tensor Sik(P; u I) of matter and gravitation (see, e.g., 
Garecki, 1981a). This tensor should be calculated from the sum Ti k + eti k 
by averaging according to the formula (2.1). After some calculations we get 
the obvious result 

Sik(P; u I) = gs i k (p ,  u 1) q-- m s i k ( P  , u l) (2.17) 

where the canonical superenergy t e n s o r  gSik(P; u t) of the gravitational field 
is given by the formula (2.9) and the superenergy tensor of m a t t e r  msik(P; 
u t) has the following form: 

I - l "c " msik(P; u 1) . =  (2aauh _ ~b) V{aVb)Ti k + -3 R (atilb)Tc k 

"1 

__  _ "k  " c I 1 R {al,.io)Ti (2.18) 
3 J 

The total canonical superenergy tensor, matter and gravitation, S3(P; u ~) 
allows us to introduce the notion of the global  superenergetic quantities Si 
o f  a closed system. We define these quantities in analogy to the energetic 
integrals, in the following manner: 

Si(~) := fx S~ I ,  fi-g-~ do.k (2.19) 

where S, .~ denotes the total canonical superenergy tensor of matter and gravita- 
tion given by (2.17), (2.9), and (2.I8) and ~ is a spacelike hypersurface 
which is asymptotically flat. do,- is an integration element (see, e.g., Landau 
and Lifschitz, 1988). 

We fix the vector field ut: utut = 1 appearing in Sik(P; u t) in the following 
way: we put the unit timelike basic vector of every NCS(P) (P is variable 
now) proportional to the timelike vector of the natural frame at the point P 
of the used global coordinates. Physically this means that we use as the 
vector field u t the field of the four-velocities of the observers at rest with 
respect to the used global coordinates. This is a natural choice of the field 
u t in fixed, global coordinates if we want to have a uniquely determined tensor 
field S~k(x) to calculate the global superenergetic quantities of a closed system. 

In asymptotically Lorentzian coordinates (ct, x, y, z) and if £ is x ° = 
ct = const, the integrals (2.19) take the form 

Si = ~ Si° l~ll dx dy dz (2.20) 
Jx 0 =cor ls t  

The integrals Si(Z), for a fixed Z, form a free vector with respect to 
GL(4; R); moreover, the integral 
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S°(V) := fv e~ l,~l dx dy dz = fv (ge~ + m e s ) ~  dx dy dz 

is invariant with respect to arbitrary coordinate transformations. From the 
last remark it follows that the amount of the superenergy inside the volume 
V has a physical meaning. 

3. APPLICATIONS OF THE CANONICAL SUPERENERGY 
TENSORS IN GENERAL RELATIVITY 

The canonical superenergy tensor gsik(P; u t) of the gravitational field 
F[.I is very useful for local analysis of the vacuum solutions to the Einstein 
equations, which are interpreted as representing gravitational waves (see, 
e.g., Garecki, 1980, 1981a,b; Krawczak, 1982; Kogcielak, 1987). Analysis 
of the so-called plane-fronted waves and plane waves showed that these 
waves transfer a superenergy flux and have positive-definite superenergy 
densities. On the other hand, the plane-fronted waves and plane waves cannot 
transfer any energy flux because the canonical pseudotensor Eti ~ vanishes 
identically for such solutions to the vacuum Einstein equations (Daficzura, 
1984). 

In Garecki (198 l a) we examined the integral superenergetic quantities 
for a closed system, and calculated the appropriate quantities for the Schwarz- 
schild space-time. 

It is very interesting that the gravitational superenergy density of the 
exterior Schwarzschild space-time is positive-definite and has the very sim- 
ple form 

8 
g e s = ~ a ~ > O  (3.1) 

where rg "= 2GM/c 2 and r > r , .  Here M denotes the total mass of the 
spherical star and r = r ,  is the value of the radial coordinate r corresponding 
to the surface of the star. 

From (3.1) we obtain that the total gravitational superenergy gS of the 
exterior Schwarzschild space-time defined as 

gs : =  ges~/['geXt I dr dO dq~ (3.2) 
=r. 

is equal to 

gs = 32rr r~ 
--if- o~ r--~ > 0 (3.3) 
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In general, the integrals representing global superenergetic quantities of 
a closed system are convergent and if space-time is static or stationary, then 
they are independent of time (Garecki, 1981a). 

In Garecki (1981a) the physical meaning and the Newtonian limit of 
the gravitational superenergy were also considered. It was shown that in the 
Newtonian limit the canonical gravitational superenergy tensor is an energy- 
momentum tensor for the field of tidal forces. 

In Garecki (1993) we calculated the gravitational and total superenergy 
densities and the total superenergy 3 of a closed Friedmann radiation-domi- 
nated universe (FRDU). The restriction to a closed FRDU is not essential. 
It was only done because in that case there exists a direct, i.e., nonparametric 
solution R = R(t) to the Friedmann equations. R denotes the so-called scale 
factor and the parameter t is the cosmic time (see, e.g., Garecki, 1993). 

It has been shown in this paper that the superenergy densities g~s and 
me, are positive-definite for R > 0 and have singularities if R --~ 0 ÷. Also 
positive-definite and finite for R > 0 is the total superenergy S, matter and 
gravitation, of the FRDU, defined by the integral 

S = f (ge, + me,)~/I g l dx dO dtp (3.4) 
J, =const 

If we do analogous calculations for open Friedmann models having the 
curvature index k = 0, 4 then we obtain the following very simple results 
(from now on we put c -- 1): 

1. Friedmann matter-dominated universe (FMDU) (k = 0, p = 0, 
where p denotes the rest pressure of  matter): 

11 
ge, - 162"rrG-~ > 0 (3.5) 

55 
me s 27arGt 4 > 0, (3.6) 

341 
es :=  ge, + me, 162arG: > 0 (3.7) 

2. Friedmann radiation dominated universe (FRDU) (k = 0, p = 
e/3, where p is the rest pressure and • is the rest energy density 
of matter): 

3 As the field u t we have taken the four-velocity field of  the so-called isotropic or fundamental 
observers at rest in the used comoving  coordinates. This  field is geometrically and physical@ 
dist inguished in this case. 

~Such cosmological  models  give the best mathematical  models  of  the universe having an 
inflation phase. 
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1 
ges -- 96,rrGt4 > 0 (3.8) 

63 
me - - -  > 0  (3.9) 

,~ 64 7r G t 4 

191 
e~ := ge~ + rues 192,rrGt 4 > 0 (3.10) 

We see that the all canonical superenergy densities are posit ive definite 
and tend to zero if the cosmic time t goes to infinity. If the cosmic time t ---> 
0 ÷ (this is equivalent to R -+ 0+), then these densities grow to a singularity. 

The total superenergies of the considered flat Friedmann universes are 
infinite for t ~ <0;  ~). 

In the case k = ( - )1 ,  p = cd3 we have the same situation as in the case 
k = 0, but the densities ges, met, e~ are more complicated in form than 
(3.5)-(3.10), and they will not be cited here. 

4. C O N C L U D I N G  R E M A R K S  

In this paper we have considered the canonical superenergy tensors in 
the framework of GR. We emphasized that although the gravitational field 
in GR has no energy-momentum tensor, one can introduce as a substitute for 
the tensor the canonical superenergy gSi ~. This tensor is obtained by special 
averaging of the gravitational canonical energy-momentum pseudotensor Et, -k. 

We also introduced into GR the canonical total superenergy tensor Si k 
= gS~ + mSik, matter and gravitation, obtained by the same averaging of the 
sum Ti k + Eti ~. 

We pointed out some possible applications of the canonical superenergy 
in GR, and applied the canonical superenergy tensors to the analysis of 
Friedmann universes and showed that the superenergy densities and the 
total superenergetic quantities are positive-definite for all the considered 
Friedmann models and that they produce singularities if the cosmic time 
t - > 0  +. 

On the other hand, energetic quantities, such as energy and linear and 
angular momentum, calculated by using the covariant Komar  single-index 
complex and (also covariant) Pirani expression for energy are equal  to zero 
(locally and globally) for all the Friedmann universes (Garecki, 1995) and 
cannot  produce any singularities unless the early universe was anisotropic 
and nonhomogeneous. 

We conclude from this that there may be no link between Komar's 
quantities and the Pirani energy calculated for Friedmann universes and the 
Hawking-Penrose singularity theorem. However, there must be a link 
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between the superenergetic quantities for Friedmann models and this theorem. 
The physical meaning of these important facts will be investigated in the 
future. 
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